Track MCP LogoTrack MCP
Track MCP LogoTrack MCP

The world's largest repository of Model Context Protocol servers. Discover, explore, and submit MCP tools.

Product

  • Categories
  • Top MCP
  • New & Updated

Company

  • About

Legal

  • Privacy Policy
  • Terms of Service
  • Cookie Policy

© 2025 TrackMCP. All rights reserved.

Built with ❤️ by Krishna Goyal

    Databricks Mcp

    43 stars
    Python
    Updated Oct 10, 2025

    Documentation

    Databricks MCP Server

    A production-ready Model Context Protocol (MCP) server that exposes Databricks REST capabilities to MCP-compatible agents and tooling. Version 0.4.4 introduces structured responses, resource caching, retry-aware networking, and end-to-end resilience improvements.

    ---

    Table of Contents

    1. Key Capabilities

    2. Architecture Highlights

    3. Installation

    4. Configuration

    5. Running the Server

    6. Integrating with MCP Clients

    7. Working with Tool Responses

    8. Available Tools

    9. Development Workflow

    10. Testing

    11. Publishing Builds

    12. Support & Contact

    13. License

    ---

    Key Capabilities

    • Structured MCP Responses - Each tool returns a CallToolResult with a human-readable summary in content and machine-readable payloads in structuredContent that conform to the tool’s outputSchema.
    • Resource Caching - Large notebook/workspace exports are cached once and returned as resource_link content blocks with URIs such as resource://databricks/exports/{id} (also reflected in metadata for convenience).
    • Progress & Metrics - Long-running actions stream MCP progress notifications and track per-tool success/error/timeout/cancel metrics.
    • Resilient Networking - Shared HTTP client injects request IDs, enforces timeouts, and retries retryable Databricks responses (408/429/5xx) with exponential backoff.
    • Async Runtime - Built on mcp.server.FastMCP with centralized JSON logging and concurrency guards for predictable stdio behaviour.

    Architecture Highlights

    • databricks_mcp/server/databricks_mcp_server.py - FastMCP server with tool registration, progress handling, metrics, and resource caching.
    • databricks_mcp/core/utils.py - HTTP utilities with correlation IDs, retries, and error mapping to DatabricksAPIError.
    • databricks_mcp/core/logging_utils.py - JSON logging configuration for stderr/file outputs.
    • databricks_mcp/core/models.py - Pydantic models (e.g., ClusterConfig) used by tool schemas.
    • Tests under tests/ mock Databricks APIs to validate orchestration, structured responses, and schema metadata without shell scripts.

    For an in-depth tour of data flow and design decisions, see ARCHITECTURE.md.

    Installation

    Prerequisites

    • Python 3.10+
    • [uv](https://github.com/astral-sh/uv) for dependency management and publishing

    Quick Install (recommended)

    Register the server with Cursor using the deeplink below - it resolves to uvx databricks-mcp-server@latest and picks up future updates automatically.

    text
    cursor://anysphere.cursor-deeplink/mcp/install?name=databricks-mcp&config=eyJjb21tYW5kIjoidXZ4IiwiYXJncyI6WyJkYXRhYnJpY2tzLW1jcC1zZXJ2ZXIiXSwiZW52Ijp7IkRBVEFCUklDS1NfSE9TVCI6IiR7REFUQUJSSUNLU19IT1NUfSIsIkRBVEFCUklDS1NfVE9LRU4iOiIke0RBVEFCUklDS1NfVE9LRU59IiwiREFUQUJSSUNLU19XQVJFSE9VU0VfSUQiOiIke0RBVEFCUklDS1NfV0FSRUhPVVNFX0lEfSJ9fQ==

    Manual Installation

    bash
    # Clone and enter the repository
    git clone https://github.com/markov-kernel/databricks-mcp.git
    cd databricks-mcp
    
    # Create an isolated environment (optional but recommended)
    uv venv
    source .venv/bin/activate  # Linux/Mac
    # .\.venv\Scripts\activate  # Windows PowerShell
    
    # Install package and development dependencies
    uv pip install -e .
    uv pip install -e ".[dev]"

    Configuration

    Set the following environment variables (or populate .env from .env.example).

    bash
    export DATABRICKS_HOST="https://your-workspace.databricks.com"
    export DATABRICKS_TOKEN="dapiXXXXXXXXXXXXXXXX"
    export DATABRICKS_WAREHOUSE_ID="sql_warehouse_12345"  # optional default
    export TOOL_TIMEOUT_SECONDS=300
    export MAX_CONCURRENT_REQUESTS=8
    export HTTP_TIMEOUT_SECONDS=60
    export API_MAX_RETRIES=3
    export API_RETRY_BACKOFF_SECONDS=0.5

    Running the Server

    bash
    uvx databricks-mcp-server@latest

    Tip: append --refresh (e.g., uvx databricks-mcp-server@latest --refresh) to force uv to resolve the latest PyPI release after publishing. Logs are emitted as JSON lines to stderr and persisted to databricks_mcp.log in the working directory.

    To adjust logging:

    bash
    uvx databricks-mcp-server@latest -- --log-level DEBUG

    Integrating with MCP Clients

    Codex CLI (STDIO)

    Register the server and inject credentials via the CLI:

    bash
    codex mcp add databricks   --env DATABRICKS_HOST="https://your-workspace.databricks.com"   --env DATABRICKS_TOKEN="dapi_XXXXXXXXXXXXXXXX"   --env DATABRICKS_WAREHOUSE_ID="sql_warehouse_12345"   -- uvx databricks-mcp-server@latest
    # Add --refresh immediately after a publish to invalidate the uv cache

    Or edit ~/.codex/config.toml:

    toml
    [mcp_servers.databricks]
    command = "uvx"
    args    = ["databricks-mcp-server@latest"]
    env = {
      DATABRICKS_HOST = "https://your-workspace.databricks.com",
      DATABRICKS_TOKEN = "dapi_XXXXXXXXXXXXXXXX",
      DATABRICKS_WAREHOUSE_ID = "sql_warehouse_12345"
    }
    startup_timeout_sec = 15
    tool_timeout_sec    = 300

    Planning an HTTP deployment? Codex also supports url = "https://…" plus

    bearer_token_env_var = "DATABRICKS_TOKEN" or codex mcp login (with

    experimental_use_rmcp_client = true).

    Cursor

    jsonc
    {
      "mcpServers": {
        "databricks-mcp-local": {
          "command": "uvx",
          "args": ["databricks-mcp-server@latest"],
          "env": {
            "DATABRICKS_HOST": "https://your-workspace.databricks.com",
            "DATABRICKS_TOKEN": "dapiXXXXXXXXXXXXXXXX",
            "DATABRICKS_WAREHOUSE_ID": "sql_warehouse_12345",
            "RUNNING_VIA_CURSOR_MCP": "true"
          }
        }
      }
    }

    Restart Cursor after saving and invoke tools as databricks-mcp-local:.

    Claude CLI

    bash
    claude mcp add databricks-mcp-local   -s user   -e DATABRICKS_HOST="https://your-workspace.databricks.com"   -e DATABRICKS_TOKEN="dapiXXXXXXXXXXXXXXXX"   -e DATABRICKS_WAREHOUSE_ID="sql_warehouse_12345"   -- uvx databricks-mcp-server@latest

    Working with Tool Responses

    structuredContent carries machine-readable payloads. Large artifacts are returned as resource_link content blocks using URIs like resource://databricks/exports/{id} and can be fetched via the MCP resources API.

    python
    result = await session.call_tool("list_clusters", {})
    summary = next((block.text for block in result.content if getattr(block, "type", "") == "text"), "")
    clusters = (result.structuredContent or {}).get("clusters", [])
    resource_links = [block for block in result.content if isinstance(block, dict) and block.get("type") == "resource_link"]

    Progress notifications follow MCP’s progress token mechanism; Codex surfaces these messages in the UI while a tool runs.

    Example - SQL Query

    python
    result = await session.call_tool("execute_sql", {"statement": "SELECT * FROM samples LIMIT 10"})
    print(result.content[0].text)
    rows = (result.structuredContent or {}).get("result", [])

    Example - Workspace File Export

    python
    result = await session.call_tool("get_workspace_file_content", {
        "path": "/Users/user@domain.com/report.ipynb",
        "format": "SOURCE"
    })
    resource_link = next((block for block in result.content if isinstance(block, dict) and block.get("type") == "resource_link"), None)
    if resource_link:
        contents = await session.read_resource(resource_link["uri"])

    Available Tools

    CategoryToolDescription
    Clusterslist_clusters, create_cluster, terminate_cluster, get_cluster, start_cluster, resize_cluster, restart_clusterManage interactive clusters
    Jobslist_jobs, create_job, delete_job, run_job, run_notebook, sync_repo_and_run_notebook, get_run_status, list_job_runs, cancel_runManage scheduled and ad-hoc jobs
    Workspacelist_notebooks, export_notebook, import_notebook, delete_workspace_object, get_workspace_file_content, get_workspace_file_infoInspect and manage workspace assets
    DBFSlist_files, dbfs_put, dbfs_deleteExplore DBFS and manage files
    SQLexecute_sqlSubmit SQL statements with optional warehouse_id, catalog, schema_name
    Librariesinstall_library, uninstall_library, list_cluster_librariesManage cluster libraries
    Reposcreate_repo, update_repo, list_repos, pull_repoManage Databricks repos
    Unity Cataloglist_catalogs, create_catalog, list_schemas, create_schema, list_tables, create_table, get_table_lineageUnity Catalog operations

    Development Workflow

    bash
    uv run black databricks_mcp tests
    uv run pylint databricks_mcp tests
    uv run pytest
    uv build
    uv publish --token "$PYPI_TOKEN"

    Testing

    bash
    uv run pytest

    Pytest suites mock Databricks APIs, providing deterministic structured outputs and transcript tests.

    Publishing Builds

    Ensure PYPI_TOKEN is available (via .env or environment) before publishing:

    bash
    uv build
    uv publish --token "$PYPI_TOKEN"

    Support & Contact

    • Maintainer: Olivier Debeuf De Rijcker (olivier@markov.bot)
    • Issues: GitHub Issues
    • Architecture deep dive: ARCHITECTURE.md

    License

    Released under the MIT License. See LICENSE.

    Similar MCP

    Based on tags & features

    • IS

      Isaac Sim Mcp

      Python·
      83
    • MA

      Mayamcp

      Python·
      27
    • BI

      Biothings Mcp

      Python·
      25
    • FH

      Fhir Mcp Server

      Python·
      55

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k
    View All MCP Servers

    Similar MCP

    Based on tags & features

    • IS

      Isaac Sim Mcp

      Python·
      83
    • MA

      Mayamcp

      Python·
      27
    • BI

      Biothings Mcp

      Python·
      25
    • FH

      Fhir Mcp Server

      Python·
      55

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k