Track MCP LogoTrack MCP
Track MCP LogoTrack MCP

The world's largest repository of Model Context Protocol servers. Discover, explore, and submit MCP tools.

Product

  • Categories
  • Top MCP
  • New & Updated

Company

  • About

Legal

  • Privacy Policy
  • Terms of Service
  • Cookie Policy

© 2025 TrackMCP. All rights reserved.

Built with ❤️ by Krishna Goyal

    Gemini Deepsearch Mcp

    24 stars
    Python
    Updated Oct 13, 2025

    Documentation

    Gemini DeepSearch MCP

    Gemini DeepSearch MCP is an automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research. It generates sophisticated queries, synthesizes information from search results, identifies knowledge gaps, and produces high-quality, citation-rich answers.

    Features

    • Automated multi-step research using Gemini models and Google Search
    • FastMCP integration for both HTTP API and stdio deployment
    • Configurable effort levels (low, medium, high) for research depth
    • Citation-rich responses with source tracking
    • LangGraph-powered workflow with state management

    Usage

    Development Server (HTTP + Studio UI)

    Start the LangGraph development server with Studio UI:

    bash
    make dev

    Local MCP Server (stdio)

    Start the MCP server with stdio transport for integration with MCP clients:

    bash
    make local

    Testing

    Run the test suite:

    bash
    make test

    Test the MCP stdio server:

    bash
    make test_mcp

    Use MCP inspector

    bash
    make inspect

    With Langsmith tracing

    bash
    GEMINI_API_KEY=AI******* LANGSMITH_API_KEY=ls******* LANGSMITH_TRACING=true make inspect

    API

    The deep_search tool accepts:

    • query (string): The research question or topic to investigate
    • effort (string): Research effort level - "low", "medium", or "high"
    • Low: 1 query, 1 loop, Flash model
    • Medium: 3 queries, 2 loops, Flash model
    • High: 5 queries, 3 loops, Pro model

    Return Format

    HTTP MCP Server (Development mode):

    • answer: Comprehensive research response with citations
    • sources: List of source URLs used in research

    Stdio MCP Server (Claude Desktop integration):

    • file_path: Path to a JSON file containing the research results

    The stdio MCP server writes results to a JSON file in the system temp directory to optimize token usage. The JSON file contains the same answer and sources data as the HTTP version, but is accessed via file path rather than returned directly.

    Requirements

    • Python 3.12+
    • GEMINI_API_KEY environment variable

    Installation

    Install directly using uvx:

    bash
    uvx install gemini-deepsearch-mcp

    Claude Desktop Integration

    To use the MCP server with Claude Desktop, add this configuration to your Claude Desktop config file:

    macOS

    Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

    json
    {
      "mcpServers": {
        "gemini-deepsearch": {
          "command": "uvx",
          "args": ["gemini-deepsearch-mcp"],
          "env": {
            "GEMINI_API_KEY": "your-gemini-api-key-here"
          },
          "timeout": 180000
        }
      }
    }

    Windows

    Edit %APPDATA%/Claude/claude_desktop_config.json:

    json
    {
      "mcpServers": {
        "gemini-deepsearch": {
          "command": "uvx",
          "args": ["gemini-deepsearch-mcp"],
          "env": {
            "GEMINI_API_KEY": "your-gemini-api-key-here"
          },
          "timeout": 180000
        }
      }
    }

    Linux

    Edit ~/.config/claude/claude_desktop_config.json:

    json
    {
      "mcpServers": {
        "gemini-deepsearch": {
          "command": "uvx",
          "args": ["gemini-deepsearch-mcp"],
          "env": {
            "GEMINI_API_KEY": "your-gemini-api-key-here"
          },
          "timeout": 180000
        }
      }
    }

    Important:

    • Replace your-gemini-api-key-here with your actual Gemini API key
    • Restart Claude Desktop after updating the configuration
    • Set ample timeout to avoid MCP error -32001: Request timed out

    Alternative: Local Development Setup

    For development or if you prefer to run from source:

    json
    {
      "mcpServers": {
        "gemini-deepsearch": {
          "command": "uv",
          "args": ["run", "python", "main.py"],
          "cwd": "/path/to/gemini-deepsearch-mcp",
          "env": {
            "GEMINI_API_KEY": "your-gemini-api-key-here"
          }
        }
      }
    }

    Replace /path/to/gemini-deepsearch-mcp with the actual absolute path to your project directory.

    Once configured, you can use the deep_search tool in Claude Desktop by asking questions like:

    • "Use deep_search to research the latest developments in quantum computing"
    • "Search for information about renewable energy trends with high effort"

    Agent Source

    The deep search agent is from the Gemini Fullstack LangGraph Quickstart repository.

    License

    MIT

    Similar MCP

    Based on tags & features

    • MA

      Mayamcp

      Python·
      27
    • BI

      Biothings Mcp

      Python·
      25
    • GG

      Gget Mcp

      Python·
      17
    • OM

      Omop Mcp

      Python·
      14

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k
    View All MCP Servers

    Similar MCP

    Based on tags & features

    • MA

      Mayamcp

      Python·
      27
    • BI

      Biothings Mcp

      Python·
      25
    • GG

      Gget Mcp

      Python·
      17
    • OM

      Omop Mcp

      Python·
      14

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k