Track MCP LogoTrack MCP
Track MCP LogoTrack MCP

The world's largest repository of Model Context Protocol servers. Discover, explore, and submit MCP tools.

Product

  • Categories
  • Top MCP
  • New & Updated

Company

  • About

Legal

  • Privacy Policy
  • Terms of Service
  • Cookie Policy

© 2025 TrackMCP. All rights reserved.

Built with ❤️ by Krishna Goyal

    Wikipedia Mcp Server

    Minimal TypeScript-based HTTP server exposing Wikipedia search and page retrieval via MediaWiki API

    0 stars
    TypeScript
    Updated Sep 22, 2025
    mcp
    mediawiki

    Documentation

    Wikipedia MCP Server

    A comprehensive Model Context Protocol (MCP) server providing access to Wikipedia content with intelligent caching, batch operations, and advanced search capabilities for local development.

    Certification

    **This MCP server is certified by MCP Review** - your trusted platform for discovering and evaluating Model Context Protocol servers.

    Features

    Core MCP Tools

    • **search** - Enhanced search with snippet control and pagination
    • **getPage** - Full page content with configurable sections, images, links, and categories
    • **getPageById** - Page retrieval by ID with the same enhancement options
    • **getPageSummary** - Fast page summaries via the Wikipedia REST API
    • **random** - Random article discovery
    • **pageLanguages** - Lists available languages for a given page

    Advanced MCP Tools

    • **batchSearch** - Search multiple queries simultaneously for efficiency
    • **batchGetPages** - Retrieve multiple pages at once with concurrency control
    • **searchNearby** - Find Wikipedia articles near specific coordinates
    • **getPagesInCategory** - Browse pages within Wikipedia categories

    Performance & Reliability

    • Intelligent Caching - Memory-based caching for improved performance
    • Request Optimization - Endpoint rotation and intelligent routing
    • Error Handling - Robust error handling with retry logic
    • TypeScript - Fully typed with strict error handling
    • Comprehensive Testing - Jest test suite with health validations

    Installation

    1. Clone or download this repository

    2. Install dependencies:

    bash
    npm install

    3. Build the project:

    bash
    npm run build

    Configuration

    Add the Wikipedia MCP server to your MCP client configuration:

    json
    {
      "mcpServers": {
        "wikipedia": {
          "command": "node",
          "args": ["/path/to/wikipedia-mcp-server/index.js"],
          "env": {
            "CACHE_MAX": "500",
            "CACHE_TTL": "300000",
            "DEFAULT_LANGUAGE": "en",
            "ENABLE_DEDUPLICATION": "true"
          }
        }
      }
    }

    Note: Replace /path/to/wikipedia-mcp-server with your actual path to the wikipedia-mcp-server directory.

    Environment Variables

    • CACHE_MAX: Maximum number of items in memory cache (default: 100)
    • CACHE_TTL: Cache TTL in milliseconds (default: 300000 = 5 minutes)
    • DEFAULT_LANGUAGE: Default Wikipedia language (default: en)
    • ENABLE_DEDUPLICATION: Enable request deduplication (default: true)
    • USER_AGENT: Custom user agent for Wikipedia API requests

    Running Locally

    Start the server using npm:

    bash
    npm start

    This starts the MCP server that communicates via stdio, perfect for integration with MCP clients like Cursor.

    Available Tools

    Core MCP Tools

    • **search** - Enhanced search with snippet control and pagination
    • **getPage** - Full page content with configurable sections, images, links, and categories
    • **getPageById** - Page retrieval by ID with the same enhancement options
    • **getPageSummary** - Fast page summaries via the Wikipedia REST API
    • **random** - Random article discovery
    • **pageLanguages** - Lists available languages for a given page

    Advanced MCP Tools

    • **batchSearch** - Search multiple queries simultaneously for efficiency
    • **batchGetPages** - Retrieve multiple pages at once with concurrency control
    • **searchNearby** - Find Wikipedia articles near specific coordinates
    • **getPagesInCategory** - Browse pages within Wikipedia categories

    Available Resources

    Wikipedia MCP Server provides 7 specialized dynamic resources that offer cached Wikipedia data and intelligent content access. These are URI-based resources that can be accessed directly by constructing the appropriate URI pattern.

    Note: These resources are dynamic and do not appear in standard resources/list calls. Access them directly using resources/read with the URI patterns below:

    wikipedia://article/{title}/{lang}

    Returns cached full content of a Wikipedia article with metadata and revision information.

    Resource Details:

    • Purpose: Access complete article content with local caching
    • Benefits: Faster article loading and reduced API calls
    • Use Cases: Article reading, content analysis, research workflows

    Response Format:

    json
    {
      "title": "Artificial Intelligence",
      "lang": "en",
      "content": {
        "pageid": 1164,
        "ns": 0,
        "title": "Artificial Intelligence",
        "revisions": [...],
        "links": [...],
        "categories": [...]
      },
      "cached": false,
      "timestamp": "2025-11-02T17:09:14.866Z"
    }

    wikipedia://search/cache/{query}

    Provides cached search results for Wikipedia queries with snippets and metadata.

    Resource Details:

    • Purpose: Cache search operations for improved performance
    • Benefits: Fast repeated searches and reduced API usage
    • Use Cases: Research queries, content discovery, topic exploration

    Response Format:

    json
    {
      "query": "machine learning",
      "results": [
        {
          "pageid": 233488,
          "title": "Machine learning",
          "snippet": "Machine learning is a method of data analysis that automates analytical model building..."
        }
      ],
      "totalResults": 1500,
      "cached": false,
      "timestamp": "2025-11-02T17:09:14.866Z"
    }

    wikipedia://metadata/{title}

    Offers comprehensive metadata for Wikipedia articles including categories, links, and references.

    Resource Details:

    • Purpose: Access rich metadata without full article content
    • Benefits: Lightweight metadata queries and relationship discovery
    • Use Cases: Citation analysis, category exploration, link analysis

    Response Format:

    json
    {
      "title": "Machine Learning",
      "pageid": 233488,
      "ns": 0,
      "revid": 123456789,
      "lastModified": "2025-11-02T15:30:00Z",
      "categories": [
        { "ns": 14, "title": "Category:Machine learning" }
      ],
      "links": [
        { "ns": 0, "title": "Artificial intelligence" }
      ],
      "references": ["https://doi.org/10.1038/nature14539"],
      "cached": false,
      "timestamp": "2025-11-02T17:09:14.866Z"
    }

    wikipedia://categories/{title}

    Provides category hierarchy and related articles for Wikipedia categories.

    Resource Details:

    • Purpose: Explore category structures and related content
    • Benefits: Topic discovery and content organization
    • Use Cases: Topic research, content curation, knowledge organization

    Response Format:

    json
    {
      "category": "Machine learning",
      "memberCount": 150,
      "members": [
        { "pageid": 123, "ns": 0, "title": "Neural network" }
      ],
      "subcategories": [
        { "pageid": 456, "ns": 14, "title": "Category:Deep learning" }
      ],
      "articles": [
        { "pageid": 789, "ns": 0, "title": "Supervised learning" }
      ],
      "cached": false,
      "timestamp": "2025-11-02T17:09:14.866Z"
    }

    wikipedia://languages/{title}

    Shows available language variants for a Wikipedia article.

    Resource Details:

    • Purpose: Discover multilingual content availability
    • Benefits: Language coverage analysis and translation discovery
    • Use Cases: Multilingual research, translation workflows, content localization

    Response Format:

    json
    {
      "title": "Machine Learning",
      "languageCount": 47,
      "languages": [
        {
          "lang": "es",
          "title": "Aprendizaje automático",
          "url": "https://es.wikipedia.org/wiki/Aprendizaje_automático"
        },
        {
          "lang": "fr",
          "title": "Apprentissage automatique",
          "url": "https://fr.wikipedia.org/wiki/Apprentissage_automatique"
        }
      ],
      "cached": false,
      "timestamp": "2025-11-02T17:09:14.866Z"
    }

    wikipedia://related/{title}

    Lists related articles and see-also links for a Wikipedia article.

    Resource Details:

    • Purpose: Discover related content and connections
    • Benefits: Content discovery and research expansion
    • Use Cases: Research expansion, content recommendations, topic exploration

    Response Format:

    json
    {
      "title": "Machine Learning",
      "seeAlsoLinks": [
        { "ns": 0, "title": "Data mining" },
        { "ns": 0, "title": "Pattern recognition" }
      ],
      "relatedArticles": [
        "Artificial intelligence",
        "Statistics",
        "Computer science"
      ],
      "categories": [
        { "ns": 14, "title": "Category:Machine learning" }
      ],
      "cached": false,
      "timestamp": "2025-11-02T17:09:14.866Z"
    }

    wikipedia://summary/{title}

    Delivers cached summary and key facts for a Wikipedia article.

    Resource Details:

    • Purpose: Get article essence without full content
    • Benefits: Quick information retrieval and content preview
    • Use Cases: Content preview, fact-checking, quick reference, research planning

    Response Format:

    json
    {
      "title": "Machine Learning",
      "summary": "Machine learning is a method of data analysis that automates analytical model building...",
      "keyFacts": {
        "Developed": "1950s",
        "Key figures": ["Arthur Samuel", "Tom Mitchell"],
        "Applications": ["Computer vision", "Natural language processing"]
      },
      "pageid": 233488,
      "lastModified": "2025-11-02T15:30:00Z",
      "wordCount": 1250,
      "cached": false,
      "timestamp": "2025-11-02T17:09:14.866Z"
    }

    Usage Examples

    Once configured in your MCP client (like Cursor), you can use natural language to interact with Wikipedia:

    • "Search for articles about artificial intelligence"
    • "Get the Wikipedia page for Machine Learning"
    • "Find Wikipedia articles near New York City"
    • "Show me the summary of Albert Einstein"
    • "What languages is the Python programming language article available in?"

    Accessing Resources

    Resources can be accessed directly using the MCP resources/read method:

    json
    {
      "jsonrpc": "2.0",
      "method": "resources/read",
      "params": {
        "uri": "wikipedia://summary/Albert Einstein"
      },
      "id": 1
    }

    Common Resource URIs:

    • wikipedia://summary/{title} - Get article summary
    • wikipedia://article/{title}/{lang} - Get full article content
    • wikipedia://metadata/{title} - Get article metadata
    • wikipedia://languages/{title} - Get available languages
    • wikipedia://categories/{title} - Get category information
    • wikipedia://related/{title} - Get related articles
    • wikipedia://search/cache/{query} - Get cached search results

    Testing

    The server includes a comprehensive Jest test suite:

    bash
    npm test

    Test Coverage:

    • Service instantiation and method availability
    • Wikipedia service integration
    • Type safety and error handling

    License

    MIT License - see LICENSE file for details.

    Similar MCP

    Based on tags & features

    • MC

      Mcp Open Library

      TypeScript·
      42
    • AN

      Anilist Mcp

      TypeScript·
      57
    • MC

      Mcp Server Kubernetes

      TypeScript·
      1.1k
    • BR

      Browser Control Mcp

      TypeScript·
      183

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k
    View All MCP Servers

    Similar MCP

    Based on tags & features

    • MC

      Mcp Open Library

      TypeScript·
      42
    • AN

      Anilist Mcp

      TypeScript·
      57
    • MC

      Mcp Server Kubernetes

      TypeScript·
      1.1k
    • BR

      Browser Control Mcp

      TypeScript·
      183

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k