Track MCP LogoTrack MCP
Track MCP LogoTrack MCP

The world's largest repository of Model Context Protocol servers. Discover, explore, and submit MCP tools.

Product

  • Categories
  • Top MCP
  • New & Updated
  • Submit MCP

Company

  • About

Legal

  • Privacy Policy
  • Terms of Service
  • Cookie Policy

© 2026 TrackMCP. All rights reserved.

Built with ❤️ by Krishna Goyal

    Mem0 Mcp

    5. Update .env file in the root directory with your mem0 API key: for the Model Context Protocol. Enhance AI assistants with powerful integrations.

    499 stars
    Python
    Updated Nov 3, 2025

    Table of Contents

    • Tools
    • Usage Options
    • Quick Start
    • Installation
    • Client Configuration
    • Test with the Python Agent
    • What You Can Do
    • Configuration
    • Environment Variables
    • Advanced Setup
    • Docker Deployment
    • Running with Smithery Remote Server
    • Development Setup
    • License

    Table of Contents

    • Tools
    • Usage Options
    • Quick Start
    • Installation
    • Client Configuration
    • Test with the Python Agent
    • What You Can Do
    • Configuration
    • Environment Variables
    • Advanced Setup
    • Docker Deployment
    • Running with Smithery Remote Server
    • Development Setup
    • License

    Documentation

    Mem0 MCP Server

    PyPI version License: Apache 2.0 smithery badge

    mem0-mcp-server wraps the official Mem0 Memory API as a Model Context Protocol (MCP) server so any MCP-compatible client (Claude Desktop, Cursor, custom agents) can add, search, update, and delete long-term memories.

    Tools

    The server exposes the following tools to your LLM:

    ToolDescription
    add_memorySave text or conversation history (or explicit message objects) for a user/agent.
    search_memoriesSemantic search across existing memories (filters + limit supported).
    get_memoriesList memories with structured filters and pagination.
    get_memoryRetrieve one memory by its memory_id.
    update_memoryOverwrite a memory's text once the user confirms the memory_id.
    delete_memoryDelete a single memory by memory_id.
    delete_all_memoriesBulk delete all memories in the confirmed scope (user/agent/app/run).
    delete_entitiesDelete a user/agent/app/run entity (and its memories).
    list_entitiesEnumerate users/agents/apps/runs stored in Mem0.

    All responses are JSON strings returned directly from the Mem0 API.

    Usage Options

    There are three ways to use the Mem0 MCP Server:

    1. Python Package - Install and run locally using uvx with any MCP client

    2. Docker - Containerized deployment that creates an /mcp HTTP endpoint

    3. Smithery - Remote hosted service for managed deployments

    Quick Start

    Installation

    bash
    uv pip install mem0-mcp-server

    Or with pip:

    bash
    pip install mem0-mcp-server

    Client Configuration

    Add this configuration to your MCP client:

    json
    {
      "mcpServers": {
        "mem0": {
          "command": "uvx",
          "args": ["mem0-mcp-server"],
          "env": {
            "MEM0_API_KEY": "m0-...",
            "MEM0_DEFAULT_USER_ID": "your-handle"
          }
        }
      }
    }

    Test with the Python Agent

    Click to expand: Test with the Python Agent

    To test the server immediately, use the included Pydantic AI agent:

    bash
    # Install the package
    pip install mem0-mcp-server
    # Or with uv
    uv pip install mem0-mcp-server
    
    # Set your API keys
    export MEM0_API_KEY="m0-..."
    export OPENAI_API_KEY="sk-openai-..."
    
    # Clone and test with the agent
    git clone https://github.com/mem0ai/mem0-mcp.git
    cd mem0-mcp-server
    python example/pydantic_ai_repl.py

    Using different server configurations:

    bash
    # Use with Docker container
    export MEM0_MCP_CONFIG_PATH=example/docker-config.json
    export MEM0_MCP_CONFIG_SERVER=mem0-docker
    python example/pydantic_ai_repl.py
    
    # Use with Smithery remote server
    export MEM0_MCP_CONFIG_PATH=example/config-smithery.json
    export MEM0_MCP_CONFIG_SERVER=mem0-memory-mcp
    python example/pydantic_ai_repl.py

    What You Can Do

    The Mem0 MCP server enables powerful memory capabilities for your AI applications:

    • Remember that I'm allergic to peanuts and shellfish - Add new health information to memory
    • Store these trial parameters: 200 participants, double-blind, placebo-controlled study - Save research data
    • What do you know about my dietary preferences? - Search and retrieve all food-related memories
    • Update my project status: the mobile app is now 80% complete - Modify existing memory with new info
    • Delete all memories from 2023, I need a fresh start - Bulk remove outdated memories
    • Show me everything I've saved about the Phoenix project - List all memories for a specific topic

    Configuration

    Environment Variables

    • MEM0_API_KEY (required) – Mem0 platform API key.
    • MEM0_DEFAULT_USER_ID (optional) – default user_id injected into filters and write requests (defaults to mem0-mcp).
    • MEM0_ENABLE_GRAPH_DEFAULT (optional) – Enable graph memories by default (defaults to false).
    • MEM0_MCP_AGENT_MODEL (optional) – default LLM for the bundled agent example (defaults to openai:gpt-4o-mini).

    Advanced Setup

    Click to expand: Docker, Smithery, and Development

    Docker Deployment

    To run with Docker:

    1. Build the image:

    bash
    docker build -t mem0-mcp-server .

    2. Run the container:

    bash
    docker run --rm -d \
         --name mem0-mcp \
         -e MEM0_API_KEY=m0-... \
         -p 8080:8081 \
         mem0-mcp-server

    3. Monitor the container:

    bash
    # View logs
       docker logs -f mem0-mcp
    
       # Check status
       docker ps

    Running with Smithery Remote Server

    To connect to a Smithery-hosted server:

    1. Install the MCP server (Smithery dependencies are now bundled):

    bash
    pip install mem0-mcp-server

    2. Configure MCP client with Smithery:

    json
    {
         "mcpServers": {
           "mem0-memory-mcp": {
             "command": "npx",
             "args": [
               "-y",
               "@smithery/cli@latest",
               "run",
               "@mem0ai/mem0-memory-mcp",
               "--key",
               "your-smithery-key",
               "--profile",
               "your-profile-name"
             ],
             "env": {
               "MEM0_API_KEY": "m0-..."
             }
           }
         }
       }

    Development Setup

    Clone and run from source:

    bash
    git clone https://github.com/mem0ai/mem0-mcp.git
    cd mem0-mcp-server
    pip install -e ".[dev]"
    
    # Run locally
    mem0-mcp-server
    
    # Or with uv
    uv sync
    uv run mem0-mcp-server

    License

    Apache License 2.0

    Similar MCP

    Based on tags & features

    • MA

      Manim Mcp Server

      Python·
      490
    • DA

      Davinci Resolve Mcp

      Python·
      327
    • BI

      Biomcp

      Python·
      327
    • CH

      Chuk Mcp Linkedin

      Python00

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k
    View All MCP Servers

    Similar MCP

    Based on tags & features

    • MA

      Manim Mcp Server

      Python·
      490
    • DA

      Davinci Resolve Mcp

      Python·
      327
    • BI

      Biomcp

      Python·
      327
    • CH

      Chuk Mcp Linkedin

      Python00

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k