Track MCP LogoTrack MCP
Track MCP LogoTrack MCP

The world's largest repository of Model Context Protocol servers. Discover, explore, and submit MCP tools.

Product

  • Categories
  • Top MCP
  • New & Updated

Company

  • About

Legal

  • Privacy Policy
  • Terms of Service
  • Cookie Policy

© 2025 TrackMCP. All rights reserved.

Built with ❤️ by Krishna Goyal

    Mcp Jenkins Intelligence

    AI-powered Jenkins pipeline intelligence platform with natural language interface. Provides comprehensive pipeline analysis, failure prediction, optimization suggestions, and automated Jenkinsfile reconstruction using Model Context Protocol (MCP) integration.

    1 stars
    Python
    Updated Oct 12, 2025
    ai
    ci-cd
    cicd
    cursor
    devops
    jenkins
    mcp-server
    vscode

    Documentation

    MCP Jenkins Intelligence

    License

    Python

    FastMCP

    Jenkins

    MCP

    Stars

    Issues

    PRs Welcome

    The Jenkins Intelligence Platform

    Transform your Jenkins operations with AI-powered natural language interfaces and comprehensive pipeline analysis.

    Quick Start (Binary Distribution)

    Prefer a ready-to-use binary? Download the latest release and start using MCP Jenkins Intelligence in seconds!

    Download & Install

    bash
    # Option 1: Use the installer script (recommended)
    curl -fsSL https://raw.githubusercontent.com/heniv96/mcp-jenkins-intelligence/main/install.sh | bash
    
    # Option 2: Manual download
    # Download from: https://github.com/heniv96/mcp-jenkins-intelligence/releases/latest
    # Choose the appropriate binary for your platform:
    # - mcp-jenkins-server-macos-arm64 (macOS Apple Silicon)
    # - mcp-jenkins-server-linux-amd64 (Linux AMD64)
    # Make executable: chmod +x mcp-jenkins-server-

    MCP Configuration

    Add to your MCP client configuration (Cursor/VSCode):

    json
    {
      "mcpServers": {
        "mcp-jenkins-intelligence": {
          "command": "/path/to/mcp-jenkins-server",
          "args": [],
          "env": {
            "JENKINS_URL": "https://your-jenkins-url",
            "JENKINS_USERNAME": "your-username", 
            "JENKINS_TOKEN": "your-token"
          }
        }
      }
    }

    That's it! No Python installation, no dependencies - just download and run!

    ---

    Overview

    MCP Jenkins Intelligence is a comprehensive Model Context Protocol (MCP) solution designed for professional DevOps teams. It provides natural language interfaces for complex Jenkins pipeline operations, enabling teams to monitor, analyze, and optimize their CI/CD workflows through AI-powered conversations in VSCode and Cursor.

    Key Features

    Intelligent Pipeline Analysis

    • Real-time Monitoring: Live pipeline status, health metrics, and performance analytics
    • AI-Powered Insights: Natural language queries for complex pipeline analysis
    • Failure Analysis: Deep dive into pipeline failures with intelligent root cause analysis
    • Performance Optimization: Automated suggestions for improving build times and success rates
    • Advanced Analytics: Comprehensive reporting and performance comparisons
    • Anomaly Detection: AI-powered detection of unusual pipeline behavior patterns

    Advanced AI Capabilities

    • Natural Language Processing: Conversational interface for complex DevOps operations
    • Smart Diagnostics: AI-driven pipeline health analysis and troubleshooting guidance
    • Context-Aware Prompts: Intelligent prompt suggestions for different analysis scenarios
    • Automated Reporting: Proactive identification of issues and optimization opportunities

    Enterprise Security & Compliance

    • Multi-Authentication Support: Standard Jenkins and Azure AD integration
    • Secure Communication: TLS encryption for all Jenkins API communications
    • Audit Logging: Comprehensive audit trails for all pipeline operations
    • Minimal Privilege: Secure by design with least privilege access patterns
    • Enterprise-Grade Data Protection: 19+ protection patterns for complete data anonymization
    • Complete Anonymization: Pipeline names, cluster names, folder names, app names, branch names, organization names, repository names, and code file names are all protected
    • Hash-based Security: Sensitive data is replaced with secure hashes before AI communication
    • Local Execution: All data processing happens locally - no data leaves your environment
    • Recursive Protection: Works on nested data structures and complex objects
    • Access Control Auditing: Comprehensive permission and access control analysis

    Advanced Analytics & Reporting

    • Comprehensive Reports: Generate detailed reports with metrics and insights
    • Performance Comparisons: Compare pipeline performance across teams and environments
    • Trend Analysis: Long-term performance and reliability trend analysis

    Advanced AI Features

    • Anomaly Detection: AI-powered detection of unusual pipeline behavior patterns
    • Comprehensive Insights: AI-generated insights and recommendations

    Performance Optimization

    • Build Time Analysis: Detailed analysis and optimization suggestions for build times

    Deployment & Distribution

    • Multiple Deployment Options: Development setup or production deployment
    • Cross-Platform Support: Works on macOS, Linux, and Windows
    • Easy Configuration: Simple setup with environment variables or MCP config

    Architecture

    MCP Protocol Integration

    The following diagram shows how MCP Jenkins Intelligence integrates with VSCode and Cursor AI through the Model Context Protocol:

    code
    ┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
    │   VSCode/       │    │   MCP Protocol  │    │   Jenkins       │
    │   Cursor AI     │◄──►│                 │◄──►│   Intelligence  │
    │                 │    │                 │    │   Server        │
    └─────────────────┘    └─────────────────┘    └─────────────────┘
                                    │
                                    ▼
                        ┌─────────────────────────────────────────┐
                        │            Jenkins API                  │
                        └─────────────────────────────────────────┘
                                    │
                                    ▼
            ┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
            │   AI Analysis   │    │   Core Tools    │    │   MCP Resources │
            │   Engine        │    │   (30 tools)    │    │   & Prompts     │
            └─────────────────┘    └─────────────────┘    └─────────────────┘
                    │                        │                        │
                    ▼                        ▼                        ▼
            ┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
            │ • Health        │    │ • List          │    │ • Status        │
            │   Analysis      │    │ • Details       │    │   Resource      │
            │ • Failure       │    │ • Builds        │    │ • Summary       │
            │   Analysis      │    │ • Configure     │    │   Resource      │
            │ • AI Queries    │    │ • Test          │    │ • Dashboard     │
            │ • Metrics       │    │ • Questions     │    │   Resource      │
            │ • Dependencies  │    │ • Trigger       │    │ • Logs          │
            │ • Trends        │    │ • Stop          │    │   Resource      │
            │ • Security      │    │ • Enable/Dis    │    │ • Health        │
            │ • Export        │    │ • Config        │    │   Resource      │
            │ • Optimize      │    │ • Predict       │    │ • Analysis      │
            │                 │    │ • Suggest       │    │   Prompts       │
            └─────────────────┘    └─────────────────┘    └─────────────────┘

    Modular Architecture

    The internal architecture follows a clean, modular design with separation of concerns:

    code
    ┌─────────────────────────────────────────────────────────────────────────┐
    │                              MCP Layer                                  │
    ├─────────────────┬─────────────────┬─────────────────────────────────────┤
    │  FastMCP Server │  Tool Registry  │  Request Router                     │
    └─────────────────┴─────────────────┴─────────────────────────────────────┘
                                    │
                                    ▼
    ┌─────────────────────────────────────────────────────────────────────────┐
    │                           Modular Services                              │
    ├─────────────┬─────────────┬─────────────┬─────────────┬─────────────────┤
    │   Models    │  Services   │  Resources  │   Prompts   │                 │
    ├─────────────┼─────────────┼─────────────┼─────────────┼─────────────────┤
    │ • Pipeline  │ • Jenkins   │ • Status    │ • Analysis  │                 │
    │ • Build     │ • Core      │ • Summary   │ • Failure   │                 │
    │ • Health    │ • Control   │ • Dashboard │ • Optimize  │                 │
    │ • Failure   │ • Monitor   │ • Logs      │ • Security  │                 │
    │ • Query     │ • AI        │ • Health    │             │                 │
    │             │ • Security  │             │             │                 │
    └─────────────┴─────────────┴─────────────┴─────────────┴─────────────────┘
                                    │
                                    ▼
    ┌─────────────────────────────────────────────────────────────────────────┐
    │                         Tool Categories                                 │
    ├─────────────────┬─────────────────┬─────────────────┬─────────────────┤
    │  Core Tools (9) │  Control Tools  │  Monitoring (4) │  AI Tools (5)   │
    │                 │     (4)         │                 │                 │
    ├─────────────────┼─────────────────┼─────────────────┼─────────────────┤
    │ • list_pipelines│ • trigger_build │ • get_metrics   │ • Predict       │
    │ • get_details   │ • stop_build    │ • dependencies  │   Failure       │
    │ • get_builds    │ • enable_disable│ • monitor_queue │ • Suggest       │
    │ • ask_questions │ • get_config    │ • analyze_trends│   Optimize      │
    │ • configure_    │                 │                 │ • Anomaly       │
    │   jenkins       │                 │                 │   Detection     │
    │ • test_         │                 │                 │ • AI            │
    │   connection    │                 │                 │   Insights      │
    │ • analyze_      │                 │                 │ • Retry         │
    │   health        │                 │                 │   Logic         │
    │ • analyze_      │                 │                 │                 │
    │   failure       │                 │                 │                 │
    │ • get_server_   │                 │                 │                 │
    │   info          │                 │                 │                 │
    └─────────────────┴─────────────────┴─────────────────┴─────────────────┘
                                    │
                                    ▼
    ┌─────────────────────────────────────────────────────────────────────────┐
    │                    Additional Tool Categories                           │
    ├─────────────┬─────────────┬─────────────┬─────────────────────────────┤
    │  Security   │ Jenkinsfile │  Analytics  │  Performance                │
    │     (2)     │     (3)     │     (2)     │      (1)                    │
    ├─────────────┼─────────────┼─────────────┼─────────────────────────────┤
    │ • scan_     │ • get_      │ • generate_ │ • analyze_                  │
    │   security  │   jenkinsfile│   report   │   build_time                │
    │             │ • reconstruct│ • compare_ │                             │
    │             │ • suggest_  │   performance│                             │
    │             │   improvements│             │                             │
    └─────────────┴─────────────┴─────────────┴─────────────────────────────┘
                                    │
                                    ▼
    ┌─────────────────────────────────────────────────────────────────────────┐
    │                    MCP Resources & Prompts                             │
    ├─────────────────────────┬─────────────────────────────────────────────┤
    │  Resources (5)          │  Prompts (4)                                │
    ├─────────────────────────┼─────────────────────────────────────────────┤
    │ • pipeline://status     │ • analyze_pipeline_prompt                   │
    │ • pipeline://{name}/    │ • failure_analysis_prompt                   │
    │   summary               │ • optimization_prompt                       │
    │ • pipeline://dashboard  │ • security_audit_prompt                     │
    │ • pipeline://{name}/    │                                             │
    │   logs                  │                                             │
    │ • pipeline://health     │                                             │
    └─────────────────────────┴─────────────────────────────────────────────┘

    Directory Structure

    code
    mcp-jenkins-intelligence/
    ├── server.py                 # Main MCP server (679 lines)
    ├── models/
    │   ├── __init__.py
    │   └── pipeline.py          # Pydantic models
    ├── services/
    │   ├── __init__.py
    │   ├── jenkins_service.py   # Jenkins API wrapper
    │   ├── core_tools.py        # Core pipeline tools
    │   ├── monitoring_tools.py  # Monitoring & analytics
    │   ├── ai_tools.py          # AI intelligence tools
    │   ├── security_tools.py    # Security & compliance
    │   ├── advanced_ai_tools.py # Advanced AI features
    │   ├── advanced_security_tools.py # Advanced security tools
    │   ├── analytics_tools.py   # Analytics & reporting
    │   ├── performance_tools.py # Performance optimization
    │   ├── execution_analysis_service.py # Execution analysis
    │   └── jenkinsfile_retrieval_service.py # Jenkinsfile management
    ├── resources/
    │   ├── __init__.py
    │   └── pipeline_resources.py # MCP resources
    ├── prompts/
    │   ├── __init__.py
    │   └── pipeline_prompts.py  # MCP prompts
    ├── config/
    │   └── settings.py          # Configuration management
    ├── utils/
    │   ├── __init__.py
    │   └── helpers.py           # Helper functions
    ├── manuals/
    │   ├── configuration/
    │   │   └── README.md        # Configuration guide
    │   ├── examples/
    │   │   └── mcp-config-standalone.json # Example configuration
    │   ├── quick-start/
    │   │   └── README.md        # Quick start guide
    │   └── troubleshooting/
    │       └── README.md        # Troubleshooting guide
    ├── dist/                    # Built binaries (GitHub Releases)
    │   ├── mcp-jenkins-server-macos-arm64    # macOS Apple Silicon binary
    │   └── mcp-jenkins-server-linux-amd64    # Linux AMD64 binary
    ├── install.sh               # Automated installer script
    ├── Makefile                 # Build automation
    ├── build.sh                 # Build test script
    ├── requirements.txt         # Python dependencies
    ├── pyproject.toml          # Project configuration
    ├── LICENSE                 # MIT License
    └── README.md              # This file

    Installation & Setup

    Prerequisites

    • Python 3.8+ (for development setup)
    • Jenkins Server with API access
    • MCP Client (VSCode with MCP extension or Cursor)

    Binary Installation (Recommended)

    1. Download the binary for your platform:

    bash
    # macOS (Apple Silicon)
       curl -L -o mcp-jenkins-server https://github.com/heniv96/mcp-jenkins-intelligence/releases/latest/download/mcp-jenkins-server-macos-arm64
       
       # Linux (AMD64)
       curl -L -o mcp-jenkins-server https://github.com/heniv96/mcp-jenkins-intelligence/releases/latest/download/mcp-jenkins-server-linux-amd64

    2. Make it executable:

    bash
    chmod +x mcp-jenkins-server

    3. Configure your MCP client (see MCP Configuration section above)

    Development Setup

    1. Clone the repository:

    bash
    git clone https://github.com/heniv96/mcp-jenkins-intelligence.git
       cd mcp-jenkins-intelligence

    2. Install dependencies:

    bash
    pip install -r requirements.txt

    3. Set environment variables:

    bash
    export JENKINS_URL="https://your-jenkins-url"
       export JENKINS_USERNAME="your-username"
       export JENKINS_TOKEN="your-token"

    4. Run the server:

    bash
    python server.py

    Configuration

    Environment Variables

    VariableDescriptionRequiredDefault
    JENKINS_URLJenkins server URLYes-
    JENKINS_USERNAMEJenkins usernameYes-
    JENKINS_TOKENJenkins API tokenYes-
    MCP_SERVER_PORTMCP server portNo8000

    MCP Client Configuration

    VSCode Configuration

    Add to your settings.json:

    json
    {
      "mcp.servers": {
        "mcp-jenkins-intelligence": {
          "command": "/path/to/mcp-jenkins-server",
          "args": [],
          "env": {
            "JENKINS_URL": "https://your-jenkins-url",
            "JENKINS_USERNAME": "your-username",
            "JENKINS_TOKEN": "your-token"
          }
        }
      }
    }

    Cursor Configuration

    Add to your mcp.json:

    json
    {
      "mcpServers": {
        "mcp-jenkins-intelligence": {
          "command": "/path/to/mcp-jenkins-server",
          "args": [],
          "env": {
            "JENKINS_URL": "https://your-jenkins-url",
            "JENKINS_USERNAME": "your-username",
            "JENKINS_TOKEN": "your-token"
          }
        }
      }
    }

    Usage

    Basic Commands

    Once configured, you can interact with Jenkins through natural language:

    • "List all pipelines" - Get a list of all available pipelines
    • "Show me the health of pipeline X" - Get detailed health analysis
    • "What's wrong with the failed build?" - Analyze build failures
    • "Optimize the build time for pipeline Y" - Get optimization suggestions
    • "Generate a report for last week" - Create comprehensive reports

    Advanced Features

    • AI-Powered Analysis: Ask complex questions about your pipeline performance
    • Anomaly Detection: Get alerts about unusual pipeline behavior
    • Security Auditing: Comprehensive security analysis of your Jenkins setup
    • Performance Optimization: Detailed build time analysis and suggestions

    API Reference

    Core Tools

    ToolDescriptionParameters
    list_pipelinesList all available pipelinessearch (optional)
    get_pipeline_detailsGet detailed pipeline informationpipeline_name
    get_pipeline_buildsGet recent builds for a pipelinepipeline_name, limit, status
    analyze_pipeline_healthAnalyze pipeline health and performancepipeline_name, period
    analyze_pipeline_failureAnalyze specific pipeline failurepipeline_name, build_number
    ask_pipeline_questionAsk natural language questionsquestion, pipeline_names

    Monitoring Tools

    ToolDescriptionParameters
    get_pipeline_metricsGet detailed pipeline metricspipeline_name, period
    get_pipeline_dependenciesGet pipeline dependenciespipeline_name
    monitor_pipeline_queueMonitor Jenkins build queue-
    analyze_build_trendsAnalyze build trends across pipelinespipeline_names, period

    AI Tools

    ToolDescriptionParameters
    predict_pipeline_failurePredict likely pipeline failurespipeline_name
    suggest_pipeline_optimizationGet optimization suggestionspipeline_name
    detect_pipeline_anomaliesDetect unusual pipeline behaviorpipeline_name, sensitivity
    generate_ai_insightsGenerate comprehensive AI insightspipeline_name, insight_type

    Security

    Data Protection

    MCP Jenkins Intelligence implements comprehensive data protection:

    • Complete Anonymization: All sensitive data is replaced with secure hashes
    • Local Processing: All data processing happens locally
    • No External Calls: No data is sent to external AI services
    • Recursive Protection: Works on nested data structures
    • Access Control Auditing: Comprehensive permission analysis

    Supported Protection Patterns

    • Pipeline names
    • Cluster names
    • Folder names
    • Application names
    • Branch names
    • Organization names
    • Repository names
    • Code file names
    • Build numbers
    • Timestamps
    • URLs and paths
    • User information
    • Token values
    • Configuration data
    • Log entries
    • Error messages
    • Stack traces
    • Environment variables
    • And more...

    Troubleshooting

    Common Issues

    1. Connection Failed: Check your Jenkins URL and credentials

    2. Permission Denied: Verify your Jenkins user has appropriate permissions

    3. Binary Not Found: Ensure the binary is executable and in your PATH

    4. MCP Client Not Responding: Check your MCP configuration

    Debug Mode

    Enable debug logging by setting:

    bash
    export DEBUG=1

    Getting Help

    • Check the troubleshooting guide
    • Open an issue
    • Review the examples

    Contributing

    We welcome contributions! Please see our contributing guidelines for details.

    Development

    1. Fork the repository

    2. Create a feature branch

    3. Make your changes

    4. Add tests

    5. Submit a pull request

    Building

    bash
    # Install dependencies
    pip install -r requirements.txt
    
    # Run tests
    python -m pytest
    
    # Build binary
    make build

    License

    This project is licensed under the MIT License - see the LICENSE file for details.

    Acknowledgments

    • FastMCP - The MCP framework
    • Jenkins - The CI/CD platform
    • Model Context Protocol - The protocol specification

    Changelog

    v1.2.0

    • Added comprehensive data protection and anonymization
    • Improved binary distribution with cross-platform support
    • Enhanced security features and access control auditing
    • Added advanced AI capabilities and anomaly detection
    • Improved performance optimization tools
    • Added comprehensive reporting and analytics

    v1.1.0

    • Initial release with core MCP functionality
    • Basic pipeline analysis and monitoring
    • AI-powered insights and recommendations

    ---

    Made with ❤️ for the DevOps community

    Similar MCP

    Based on tags & features

    • AW

      Aws Mcp Server

      Python·
      165
    • SE

      Serena

      Python·
      14.5k
    • BI

      Biomcp

      Python·
      327
    • DA

      Davinci Resolve Mcp

      Python·
      327

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k
    View All MCP Servers

    Similar MCP

    Based on tags & features

    • AW

      Aws Mcp Server

      Python·
      165
    • SE

      Serena

      Python·
      14.5k
    • BI

      Biomcp

      Python·
      327
    • DA

      Davinci Resolve Mcp

      Python·
      327

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k