Track MCP LogoTrack MCP
Track MCP LogoTrack MCP

The world's largest repository of Model Context Protocol servers. Discover, explore, and submit MCP tools.

Product

  • Categories
  • Top MCP
  • New & Updated

Company

  • About

Legal

  • Privacy Policy
  • Terms of Service
  • Cookie Policy

© 2025 TrackMCP. All rights reserved.

Built with ❤️ by Krishna Goyal

    Deep Research Mcp

    Git clone https://github.com/Ozamatash/deep-research for the Model Context Protocol. Enhance AI assistants with powerful integrations. TypeScript-based implemen

    276 stars
    TypeScript
    Updated Oct 15, 2025

    Documentation

    Open Deep Research MCP Server

    An AI-powered research assistant that performs deep, iterative research on any topic. It combines search engines, web scraping, and AI to explore topics in depth and generate comprehensive reports. Available as a Model Context Protocol (MCP) tool or standalone CLI. Look at exampleout.md to see what a report might look like.

    Quick Start

    1. Clone and install:

    bash
    git clone https://github.com/Ozamatash/deep-research
    cd deep-research
    npm install

    2. Set up environment in .env.local:

    bash
    # Copy the example environment file
    cp .env.example .env.local

    3. Build:

    bash
    # Build the server
    npm run build

    4. Run the cli version:

    bash
    npm run start

    5. Test MCP Server with Claude Desktop:

    Follow the guide thats at the bottom of server quickstart to add the server to Claude Desktop:

    https://modelcontextprotocol.io/quickstart/server

    For remote servers: Streamable HTTP

    bash
    npm run start:http

    Server runs on http://localhost:3000/mcp without session management.

    Features

    • Performs deep, iterative research by generating targeted search queries
    • Controls research scope with depth (how deep) and breadth (how wide) parameters
    • Evaluates source reliability with detailed scoring (0-1) and reasoning
    • Prioritizes high-reliability sources (≥0.7) and verifies less reliable information
    • Generates follow-up questions to better understand research needs
    • Produces detailed markdown reports with findings, sources, and reliability assessments
    • Available as a Model Context Protocol (MCP) tool for AI agents
    • For now MCP version doesn't ask follow up questions
    • Natural-language source preferences (avoid listicles, forums, affiliate reviews, specific domains)

    Model Selection (OpenAI, Anthropic, Google, xAI)

    Pick a provider and model per run.

    • CLI: you will be prompted for provider and model. Example: openai + gpt-5.
    • MCP/HTTP: pass model, e.g. openai:gpt-5,

    Set the corresponding API key in .env.local:

    code
    OPENAI_API_KEY=...
    ANTHROPIC_API_KEY=...
    GOOGLE_API_KEY=...
    XAI_API_KEY=...

    How It Works

    mermaid
    flowchart TB
        subgraph Input
            Q[User Query]
            B[Breadth Parameter]
            D[Depth Parameter]
            FQ[Feedback Questions]
        end
    
        subgraph Research[Deep Research]
            direction TB
            SQ[Generate SERP Queries]
            SR[Search]
            RE[Source Reliability Evaluation]
            PR[Process Results]
        end
    
        subgraph Results[Research Output]
            direction TB
            L((Learnings with
            Reliability Scores))
            SM((Source Metadata))
            ND((Next Directions:
            Prior Goals,
            New Questions))
        end
    
        %% Main Flow
        Q & FQ --> CQ[Combined Query]
        CQ & B & D --> SQ
        SQ --> SR
        SR --> RE
        RE --> PR
    
        %% Results Flow
        PR --> L
        PR --> SM
        PR --> ND
    
        %% Depth Decision and Recursion
        L & ND --> DP{depth > 0?}
        DP -->|Yes| SQ
        
        %% Final Output
        DP -->|No| MR[Markdown Report]
    
        %% Styling
        classDef input fill:#7bed9f,stroke:#2ed573,color:black
        classDef process fill:#70a1ff,stroke:#1e90ff,color:black
        classDef output fill:#ff4757,stroke:#ff6b81,color:black
        classDef results fill:#a8e6cf,stroke:#3b7a57,color:black,width:150px,height:150px
    
        class Q,B,D,FQ input
        class SQ,SR,RE,PR process
        class MR output
        class L,SM,ND results

    Advanced Setup

    Using Local Firecrawl (Free Option)

    Instead of using the Firecrawl API, you can run a local instance. You can use the official repo or my fork which uses searXNG as the search backend to avoid using a searchapi key:

    1. Set up local Firecrawl:

    bash
    git clone https://github.com/Ozamatash/localfirecrawl
    cd localfirecrawl
    # Follow setup in localfirecrawl README

    2. Update .env.local:

    bash
    FIRECRAWL_BASE_URL="http://localhost:3002"

    Optional: Observability

    Add observability to track research flows, queries, and results using Langfuse:

    bash
    # Add to .env.local
    LANGFUSE_PUBLIC_KEY="your_langfuse_public_key"
    LANGFUSE_SECRET_KEY="your_langfuse_secret_key"

    The app works normally without observability if no Langfuse keys are provided.

    License

    MIT License

    Similar MCP

    Based on tags & features

    • BA

      Bazi Mcp

      TypeScript·
      184
    • BR

      Browser Control Mcp

      TypeScript·
      183
    • VS

      Vscode Mcp Server

      TypeScript·
      260
    • MC

      Mcp Server Commands

      TypeScript·
      199

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k
    View All MCP Servers

    Similar MCP

    Based on tags & features

    • BA

      Bazi Mcp

      TypeScript·
      184
    • BR

      Browser Control Mcp

      TypeScript·
      183
    • VS

      Vscode Mcp Server

      TypeScript·
      260
    • MC

      Mcp Server Commands

      TypeScript·
      199

    Trending MCP

    Most active this week

    • PL

      Playwright Mcp

      TypeScript·
      22.1k
    • SE

      Serena

      Python·
      14.5k
    • MC

      Mcp Playwright

      TypeScript·
      4.9k
    • MC

      Mcp Server Cloudflare

      TypeScript·
      3.0k